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will be affected. As a result, also the interaction terms with 
potential migrating groups will be altered. 

Recently, a similar theory of catalytic activity has been 
worked out. ' ' 
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Potential surfaces are of importance in chemistry for ex
plaining geometry, spectra, and chemical reactions. Triatomic 
potential surfaces (especially for excited states) have recently 
become of even greater interest because of work in plasmas, 
lasers, and atmospheric pollution associated with various as
pects of the energy crisis. Unlike diatomic molecules which are 
fairly well characterized, polyatomic potential surfaces are only 
vaguely understood. While the general features expected for 
a diatomic molecule potential curve over the whole range of 
possible molecular conformations are well known, such a global 
topology for triatomic molecules is not usually discussed. 

General Considerations 

A potential surface, for the purpose of the present discussion, 
will be a function U(X\, . . . , XK) generated as one of the so
lutions to an electronic (Born-Oppenheimer) Schrodinger 
equation 

Hi(r,...rN;X}...XK) 

= U(X1... XK)Mr1... Fy1-X1... XK) (1) 

where the /•, are electronic coordinates and the X; are coordi
nates for describing the conformation of the nuclei in the 
molecule. The operator H in the simplest approximation is just 
the usual electronic hamiltonian involving electronic kinetic 
energy and coulomb interactions, 

+ e2 E Z A Z B / - A B - ' + e 2 E /V; - ' (2) 
A ^ B ijij 

For discussing a potential surface U it is sufficient to pick the 
complete set of coordinates X, which affect the shape or size 
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(13) The geometry of the cyclopentadiene transition state has been optimized 

with respect to eight variables (see Table II). A fully optimized transition 
state as calculated by Ustynyuk et al. shows no essential difference.6 Our 
optimization resulted in an approximately symmetric structure as can be 
derived from Table II, which shows /3 approximately equal to y and b = c 
Consequently for all other cyclic systems the symmetry plane was as
sumed, while optimizing all other variables. In all systems it was assumed 
that the transition state has only one negative force constant. 

(14) The reason for the cyclic symmetry properties in the present case is 
probably to be ascribed to the enhanced flexibility of the system. This en
ables a closer approach between migration origin and terminus in the 
transition state as compared to cycloheptatriene. In the acyclic pentadienyl 
system therefore the pz orbitals of migration origin and terminus overlap 
in order to form a partial ir bond. In the cycloheptatriene system, the two 
carbon atoms involved are held apart by the rather rigid ethylene moi
ety. 

(15) NOTE ADDED IN PROOF. In reality the H13 level liesaDout 1/3(/S = —2.4eV) 
below the zero level, but this does not affect any of the conclusions. 

of the molecule but not its position or orientation in space. 
Hence for three or more atoms K is 3A^A — 6 where A7A is the 
number of atoms (for a global discussion of U the question of 
whether the molecule is "linear" or not does not enter). 

The Schrodinger equation for a molecule actually defines 
an infinite family of potential surfaces, of course. Because of 
the possibility of intersections, great care must be exercised 
in identifying a surface. In general, there are certain elements 
of symmetry such as electron spin which are global in nature 
(i.e., commute with H for all values of the X1). Diatomic 
molecules are always linear and triatomics are always planar, 
while larger polyatomics have no global geometric symmetry. 
In any case, the electronic wave functions and associated po
tential surfaces can be labeled with whatever global symmetry 
is present. Beyond that, at each set of nuclear coordinates A", 
the potential surfaces of the same global symmetry are simply 
numbered in order of increasing energy. With this convention 
the /cth potential energy surface of symmetry T, Uk(T), will 
be a continuous function of the X,. For diatomic molecules this 
convention is known to lead to smooth (differentiable) func
tions Uk (except for the 2scrg and 3d<7g curves' for H2+) which 
do not intersect other curves of the same symmetry2 in the open 
interval 0 < R < °°. 

By global topology is meant the study of the shape and 
structure of the potential energy surface over the entire range 
of the nuclear position coordinates. Certain kinds of structural 
features are well-known. For example, wherever two nuclei 
coincide the potential surface has a coulomb singularity. This 
singularity is easily removed by subtracting the nuclear-nu
clear repulsion from U to get the "electronic energy" Ue 

U, = U-eJ- E ZAZB/-AB-" (3) 
A^B 
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Near TAB = O, Ue continuously approaches the united atom 
limit equivalent to replacing nuclei A and B by one nucleus of 
change Z\ + ZB- If both nuclei have atomic numbers greater 
than two, however, the wave function and Ue will change 
rapidly over a very small range of R \ B as the inner electron 
cores penetrate each other. 

There will also be asymptotic regions corresponding to 
fragmenting the molecule into various pieces. In the limit of 
large separation between the fragments, U will be independent 
of the exact separation or orientation of the fragments and will 
be just the sum of appropriate LTs for each individual frag
ment. 

Of great interest to chemists has been the structure of the 
first and second derivatives of U with respect to nuclear coor
dinates. At most points on the surface one can define the gra
dient vector with elements dU/dX, and the force constant 
matrix with elements d2U/dX,dXj. Further, one can diago-
nalize the force constant matrix at each point to obtain local 
normal coordinates and local canonical second derivatives. 

The point where the gradient vanishes and all second de
rivatives are positive is a stable local minimum which may 
correspond to the geometry of a possible isomer formed from 
the atoms present. Assumptions concerning atomic radii ad-
ditivity3 to give bond lengths and Walsh's rules4'5 to give bond 
angles (plus the observation that the most electronegative 
atoms appear in terminal positions) often allow intelligent 
prediction of the location of minima in U. 

The gradient may also vanish at a point where one canonical 
second derivative is negative. In this case the point is a tran
sition state in an isomeric rearrangement (in a global sense 
which includes exchange reactions as isomerizations). At this 
point the normal coordinate associated with the negative sec
ond derivative is the local reaction coordinate. In practice 
transition states are not as well understood as minima (because 
they are not as directly deduced from experiments) and are 
much harder to locate in a multidimensional space.6 The 
gradient may also vanish at points with more than one negative 
second derivative. These more general saddle points have not 
yet been invoked in explaining reactions since there is usually 
a lower energy pathway for the reactions.7 Because of the 
importance of the signs of the canonical second derivatives, a 
map showing the locus of inflection points where one (or more) 
second derivative is zero would be of interest. These surfaces 
would divide the space into regions of differing numbers of 
negative second derivatives. 

Finally, an essential feature of most K dimensional potential 
surfaces for molecules with three or more atoms is a K — 2 
dimensional network of branch-cuts along which U (and the 
electronic wave function) is not differentiable with respect to 
the nuclear coordinates.8 Any motion of the nuclei during vi
brations, reactions, or collisions which brings the nuclear 
conformation near such a cut must be treated cautiously since 
the adiabatic approximation is certainly not valid and a cou
pled-state diabatic treatment must usually be introduced to 
obtain correct understanding of the experimental results.9 

As was shown by Teller,8 these branch-cuts arise whenever 
two potential surfaces of the same global symmetry are de
generate. Unlike diatomic molecules, such "crossings" are 
allowed for polyatomic molecules. At certain special values of 
the nuclear coordinates, the electronic hamiltonian may 
commute with additional point-group operators so that the 
"local" symmetry at the "site" X]1X2, • • •, Xk may be higher 
than the global symmetry. At such a site the wave function 
must tranform like an irreducible representation of the local 
symmetry group. The most easily understood degeneracies for 
polyatomic molecules are those which occur at sites of very 
high symmetry and which are required by symmetry (as in the 
Jahn-Teller theorem10). The next most easily understood 
degeneracies are those (as in NO2) which occur at sites of 

higher than global symmetry between states of the same global 
symmetry but different local symmetry.1 ' In this case the in
tersection is allowed, but not required, by symmetry. As shown 
by Longuet-Higgins, model hamiltonians (and presumably real 
molecules) can also be found for which degeneracies occur at 
the lowest symmetry points.12 

To see the essential features of such a point of degeneracy 
consider two surfaces of the same global symmetry, say U\ and 
U2, which are degenerate at a point {X\°,. .., X^0) and have 
wave functions ^ i 0 and \p2° at that point. Then near X0 energy 
can be computed by first-order degenerate perturbation theory. 
That is, H can be expanded at X0 + 5 as 

H = H0 + L (dH/dXj)05j (4) 
j 

and the first-order approximation to the energies U\ and U2 
can be formed by diagonalizing the 2 X 2 matrix with ele
ments 

HM=(+p°\H\fq°) (5) 
p , q = 1 or 2 

Substitution gives 

Hpq = 5pqU° + £ (fp°\(dH/bXj)o\4>q°)&j (6) 
j 

Not let |k (A: = 1, 2, 3) be vectors with components 

!/1 = 1A[Wi0KdZW)0I^
0) + <*2°Kd*W)o|lfc0)] 

(7) 

|/2 = l/2[(^,0|(di//dA-i)o|^,°> - W2°|(MW)o|*2°>] 
(8) 

|/3 = Wi 0 | ( a /W)o |*2°> <9> 

Then the potential surfaces very near X0 can be seen to be 

U = U0 + I, • 5 ± [ ( | 2 • 6)2 + ( |3 • S) 2 ] ' / 2 (10) 

Thus U is independent of displacements 5 orthogonal to the |* 
(at least K — 3 directions). Further, for a displacement h or
thogonal to I2 and |3 , C/1 and U2 remain degenerate. That is, 
the intersection of U\ and Ui is only a K — 2 dimensional re
gion around X0 unless | 2 and | 3 happen to be linearly depen
dent or one of them vanishes (which will usually not happen 
if ^ i j i nd ^ 2 are of the same global symmetry^3). _ 

If U is defined as '/2(£/i + U2), then U\-U and U2-U 
depend only on |2-5 and | 3 -5 . As shown in Figure 1, a graph of 
these functions gives the upper and lower portions of a right 
circular cone with vertex at the origin. This is the typical Teller 
splitting8 which is linear in the norm of the displacement vector 
8. 

The electronic wave functions also have some peculiar 
properties near this intersection. If 

cos a = ( |2 • S)/A (11) 

sin a = (Z3. S)/A (12) 

and 

a , l ) !2-<$) 2 + ( | 3 - 5 ) 2 ] l / 2 (13) 

then 

U-U= ±A (14) 

\p2 = cos ( a /2W,° + sin (a /2 )^ 2 ° (15) 

and 

Vf-i = - s in ( a / 2 M ° + cos (a/2W2
0 (16) 

Thus if the projection of 5 onto the I2, | 3 plane is moved once 
around a closed curve encircling the origin, a will change by 
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B...A 

'CBA 

/ 

BC...A 

/ 

B-y 
/BCA 

3AC 

B...CA 

B...AC 

Figure 1. Jahn-Teller splitting diagram. 

AB..C, 

Figure 3. Relation between coordinates and molecular conformation. The 
loci of symmetrical linear molecules and equilateral triangle molecules 
are shown. 

Figure 2. Coordinates for triatomic molecule. 

2ir and ^i and \f/2 will reverse sign. Longuet-Higgins has re
cently demonstrated12 that this is a general result which does 
not depend on using small displacements. Any one-dimensional 
closed loop "encircling" a K — 2 dimensional intersection in 
the sense just described will give a sign reversal in ^ and con
versely such a sign reversal is a sufficient test for an intersec
tion. 

It will be noticed in the above discussion that U\ and u/| are 
both nondifferentiable with respect to nuclear coordinates near 
A equal zero. Hence the adiabatic approximation fails near 
the intersection of U\ and Ui- Further, from the fact that \p\ 
cannot be made a continuous function of nuclear coordinates 
on a global scale (because of the sign reversal around any loop 
surrounding the intersection), it is clear that the adiabatic 
approximation can only be useful in certain local regions for 
nuclear excursions which do not leave that region and which 
do not come close to a potential surface intersection. 

Triatomic Molecules 
For triatomic molecules it is convenient to introduce the 

Pekeris coordinates 

# A = 1 A ( K A B + / ? A C - - R B C ) 

RB = '/2(^AB + R&C ~ RAC) 

Rc = HRAC + RBC-RAR) 

which have the property that: (1) Interatomic distances are 
given simply as the sum of these coordinates, for example, RAB 
= RA + RB- (2) Every triplet of numbers (RA, ^?B, ^ C ) in the 
positive octant (/?A > 0, /?B S; 0, Rc ^ 0) gives a unique mo
lecular conformation (no additional "triangle inequalities" are 

Figure 4. Site symmetry in triatomic coordinate system. Unlabeled points 
are G symmetry. 

needed as they are when /?AB> /?BC» RAC are used as coordi
nates). (3) The asymptotic region for dissociation to an atom 
and a diatomic molecule is described by only one coordinate 
being large and the sum of the other two being the diatomic 
bond length. (4) The coordinates are the radii of mutually 
tangent circles around each nucleus (as shown in Figure 2). 
(5) The boundary planes of the positive octant (where one ^ i 
is zero) correspond to linear molecules with atom I in the center 
(for RA = 0, ^ B = RAB, and Rc = RAC SO the coordinates RB, 
Rc reduce to the usual ones used to describe linear triatomic 
systems). (6) The ^i axes correspond to the locus of points 
where two nuclei coincide and the origin to the point where all 
three nuclei coincide. 

Figure 3 summarizes the molecular conformations at various 
limiting positions in this coordinate system. Figure 4 sum
marizes the site symmetry of special positions (higher than Cx 
symmetry) in the positive octant. A molecule placed at a site 
of high symmetry will have the symmetry of the site provided 
the group operations merely interchange identical nuclei. A 
molecule with three identical nuclei such as O3 will have the 
full site symmetry group and the wave functions will transform 
like irreducible representations of this group. 

(A) The H3 System. Very little is actually known on this 
global scale about the potential surfaces of any particular 
molecule. Figure 5 shows a qualitative sketch of a contour of 
constant energy for the H3 system. This system has no stable 
minimum and the contour is drawn at about twice the zero-
point energy above the minimum energy of H2 + H. The vol
ume enclosed by the contours is the classical region accessible 
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Figure 5. Constant energy contours for the 2A' ground state of H3. Each 
saddle point of the exchange reaction is marked by a solid square. 

Figure 6. Branch lines for the lowest 2A' state of H3. For reference, each 
saddle point is marked by a solid square and the loci of symmetrical linear 
molecules are shown. 

to three hydrogen atoms with energy about 6 kcal/mol above 
the minimum possible potential energy. The wide flat shape 
in the asymptotic region arises from the rather small range of 
stretching motion possible accompanied by almost complete 
freedom to rotate the H2 molecule relative to the H atom (i.e., 
all points in the surface R^ + RB = RAB = constant, for Rc 
large, are accessible). It is known that the linear shape is lower 
in energy at closer distances of approach.14 This is reflected 
in the sketch by the contours extending to closer approach 
distances for linear than for nonlinear conformations. The 
known saddle points are indicated by solid squares on the fig
ure. Detailed information such as the shape of surfaces of in
flection are not yet available even for this very simple sys
tem. 

Figure 6 shows a sketch of the branch-cut network for H3. 
For reasonable values of the coordinates it is known that the 
only degeneracy expected occurs at DM conformations where 
simple molecular orbital theory predicts a 2E' ground state. 
At very small distances, however, the wave function must ap
proach the united atom ls22s 2S (lithium) limit. Hence, along 
the line of Z)3/, conformations the 2E' state must intersect a 2Ai' 
state which has the same global (2A') symmetry as each 
component of 2E'. At small Ci0 distortions from Z)3/,, the 2E' 
state splits into 2A1 and 2B2 while 2A ]' gives only 2A1. At very 
large Ci0 distortions, say linear symmetric, 2B2 correlates with 
the known 2S11

+ wave function of the saddle point region while 
2Ai would become 2Sg+. Thus at each bond angle between 60 
and 180° for a Ci0 conformation one would expect the wave 
function to be 2 B 2 at reasonable bond lengths but 2Ai at very 
short bond lengths. For angles much less than 60° the wave 
function would be expected to be 2Ai at both large and small 
bond lengths and can change continuously from one form to 

Figure 7. Symmetry labels of the wave function for branch lines of the 
lowest 2A' state of H3 in one Cu- plane and one linear plane. The saddle 
point is marked by a solid square and the symmetrical linear locus formed 
by the intersection of the Ci0 and linear planes is shown. 

Figure 8. Structure of the lowest 2A' state of H3 in a plane perpendicular 
to the equal bond length (O3/,) direction. Relative minima are marked by 
X. 

the other. Figure 6 is the simplest diagram consistent with these 
facts. Figure 7 summarizes the symmetry changes on one C2,-
plane and one linear plane caused by this branch-cut. 

It should perhaps be emphasized again that it is always 
possible to pass continuously from one of these wave functions 
to another by following a path which avoids the branch-cut. 
Although a calculation at Z>„/, conformations might have 
treated 2 2 g

+ and 2 S U
+ as two states which cross, in a global 

sense the lower of them at each point is part of the same 2 S + 

C„ r surface. Similarly the 2Ai and 2B2 surfaces might have 
been thought to be two states in a C2,- restricted calculation of 
the energy but the lower of them at each point is in reality part 
of the same 2A' potential surface. 

Figure 8 emphasizes this continuous passage between states 
of different symmetry in a plane perpendicular to the Z)3/, di
rection. Because there are three different C21- subgroups of Dj/,, 
three different sets of 2A1, 2B2 pairs of labels are encountered 
which are equivalent but differ in which av mirror plane from 
Z)3/, is preserved. The minimum energy for H3 in this plane is 
marked by X. It is interesting that this minimum occurs at a 
point of low symmetry and hence there are six equivalent 
minima separated by barriers for exchange and rotation. 
Within this plane, the potential surface is an example of the 
usual Jahn-Teller distortion10 (an intrinsically degenerate pair 
of distortion coordinates and an intrinsically degenerate po
tential surface) and has been discussed as such by Porter et 
al.15 
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Figure 9. Branch lines for the lowest 2A' state of HCO. 

Longuet-Higgins12 uses an example like the Dn, 2E' 
branch-cut of H3 and this plane perpendicular to the Dj,h di
rection as an example of a sign changing loop. Any loop in this 
plane encircling the D^ line (center of the triangle) will give 
a change in sign of the wave function. Figure 6 introduces an 
additional kind of point not considered by Longuet-Higgins. 
A loop encircling two legs of the branch-cut can easily be 
shown to involve no sign change even in the limit that the loop 
shrinks to a small circle around the point where the branch-cuts 
join together. For a branch-cut which terminates in a plane of 
linear conformations, it is still true that a loop in that plane 
around the terminus will give a sign change. 

(B) Other Triatomic Systems. Even less is known about the 
global properties of potential surfaces for other triatomic 
molecules. Figure 9 shows the branch-cuts resulting from an 
extended Huckel calculation for the lowest 2A' state of HCO 
(plus consideration of various possible limits). In this case the 
branch-cuts seem to run entirely through various linear con
formations. If other branches are present they have not yet 
been discovered. Other cuts are almost certain to be present 
very near the united atom. The switch from 2 S + to the 2A' 
component of 2II along the OC • • • H approach has been pre
viously recognized as an important part of the reason that 
OCH is a nonlinear molecule.'6 The switch from 2II to 2S near 
the /?o ax's is associated with the switch from the 4S ground 
state of the N atom to the 2II ground state of CH. 

For this example, there would seem to be no loops which can 
be drawn around the branch-cut. This brings up a problem in 
interpretation. For a linear triatomic molecule there are usually 
said to be four rather than three coordinates because one of the 
rotational coordinates of the nonlinear molecule becomes an 
internal coordinate. There would seem to be no way to do this 
consistently on a global scale short of always including all three 
rotational degrees of freedom and treating the surface in six 
dimensions. For the six-dimensional treatment, the global 
symmetry would be only C\ ® O3 although every point has at 
least Cs ® O3 site symmetry. Branch-cuts would then be four 
dimensional (as for example the 2II degenerate pair of states 
in a full Renner-Teller treatment17). As shown by Longuet-
Higgins,12 simultaneous intersection of three surfaces would 
normally by zero dimensional, but for the special case of 2-11 
intersection in triatomic molecules two of the splitting direc
tions become linearly dependent and two have no effect on the 
energy so the triple intersection is three dimensional. No the
orems concerning sign reversals caused by mixing of three 
states under distortions in the splitting directions have been 
given. For this special case it is clear that two fixed wave 
functions for the 2II state can be combined into a 2A' and 2A" 
pair relative to the molecular plane defined by the distorted 
molecule and then the 2A' function thus formed mixes with the 
2 S + wave function. The relevant distortion coordinates are the 
two perpendicular bends and one stretching mode. 

H...HC 

Figure 10. Branch lines for the lowest 3A" state of CH2. The Ci, plane is 
outlined for reference. 

R 0I = R 0 2 

Figure 11. Branch lines for the lowest 2A' state of NO2 in the C2, 
plane. 

Figure 10 shows the branch-cuts for CHi computed in 
conjunction with C. F. Bender of Lawrence Livermore Labo
ratory. Even with fairly elaborate SCF-CI methods it is dif
ficult to determine the positions of the branch-cuts accurately 
because SCF-CI methods do not give reliable results at unusual 
bond lengths. The diagram agrees with qualitative expecta
tions, however, that CH should be 2II at most bond lengths but 
42~~ near the united atom limit. Also CHT at C2,- configurations 
is known to be 3Bi at obtuse bond angles but clearly should be 
3AT for very acute bond angles. The equilibrium geometry for 
CH2 lies near the center of the 3Bi region. This would be a very 
interesting example for study of the exchange reactions C + 
H2 -* CH + H or HC + H — H + CH because of the ex
pected difficulties caused by the branch-cuts. The complexity 
of the branching diagram for CH2 and similar "simple" mol
ecules also makes clear the difficulty in obtaining an approx
imate function to represent the potential surface over a wide 
range of coordinates. 

As a final example, Figure 11 presents a part of the 
branching diagram for NO2 in the C2, plane. This example is 
interesting because the 2B2 and 2Ai regions each contain a 
minimum in the C2r plane. These were originally treated as 
two states rather than two parts of the lowest 2A' state of NO2. 
Detailed calculations'' have indicated that when more general 
conformations are considered, the 2B2 "minimum" is actually 
a saddle point from which one can pass by a down-hill path to 
the 2A] minimum (through non-C2(- conformations). This is 
a quite complicated example and only a small part of the po
tential surface has been accurately studied. 
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Conclusion 

Some tentative examples have been presented to illustrate 
the need for global understanding of the potential surface. 
Although the Teller theorem is well-known, its implications 
have not been carefully considered previously. The network 
of branch-cuts is a topological feature which must be carefully 
considered in a global discussion of polyatomic potential sur
faces because the existence of such a network to a certain ex
tent invalidates the adiabatic approximation for describing 
nuclear motion. Because of the possibility of sign-reversing 
loops which lie at a great distance from branch-cut singulari
ties, it is generally impossible to assign an electronic wave 
function to each nuclear configuration in such a way that the 
wave function is continuous in nuclear coordinates. 
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[Fe4(?75-C5H5)4(/U4-S)4]+ monocation possessed a hitherto 
unknown molecular orbital electronic configuration for a cu
bane-like species made it especially desirable to determine the 
stereochemical effect of a one-electron oxidation on the Fe4S4 
core. The resulting structural information presented here has 
provided a requisite basis for our subsequent studies4 directed 
toward a systematization of the topological nature of cu
bane-like transition metal clusters from which the geometries 
of such complexes can be correlated with the varying number 
of electrons in the metal cluster orbitals. 

Experimental Section 

Preparation and Properties, (a) General Remarks. The neutral 
Fe4(7)5-C5H5)4(/U3-S)4 complex was prepared as described previous
ly.66 The cationic species was obtained in nearly quantitative yields 
from oxidation of Fe4(Tp-CiHs)4(Ms-S)4 by different oxidizing agents 
such as AgBF4, I2, and Br2. The [Fe4(Jp-C5Hs)4(Ms-S)4] [PF6] salt 
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Abstract: The [Fe4(7;5-C5H5)4(M3-S)4] + monocation was obtained from oxidation of the neutral Fe4(r/5-CsH5)4(M3-S)4 cluster 
by different oxidizing agents such as AgBF4, I2, and Br2. An x-ray diffraction study of the ^64(Tp-C5Hs)4(M3-S)4]Br salt re
veals that the one-electron oxidation of the neutral species distorts the Fe4S4 core from a tetragonal D2j-42m geometry con
taining two electron-pair bonding and four nonbonding Fe-Fe distances of 2.64 and 3.36 A, respectively, to an orthorhombic 
D2-222 geometry possessing three pairs of Fe-Fe distances of 2.65, 3.19, and 3.32 A. This preferential shortening of two of the 
four long Fe-Fe distances in the monocation relative to those in the parent molecule is attributed to the removal of an electron 
from an antibonding iron cluster orbital of degenerate e representation (under D2J symmetry), which thereby produces the ob
served orthorhombic distortion via a first-order Jahn-Teller effect. Crystals of [Fe4(r/

5-C5H5)4(M3-S)4]Br are monoclinic with 
space group symmetry A 2/a and lattice constants a = 15.668(2) A, b = 13.289(2) A, c = 13.996 (2) A,/3 = 124.48 (I)0, and 
Pobsd = 1.94 vs. pealed =1.91 g cm"3 for Z = 4. Least-squares refinement gave R\ = 8.0% and R2 = 7.1% for 1053 independent 
diffractometry data with / > 2.0<r(/). 
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